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The molecule of the title compound, C3H2ClN3O2, is almost

planar; the dihedral angle between the imidazole ring and the

nitro group is 1.7 (2)�. In the crystal structure, pairs of

intermolecular C—H� � �O hydrogen bonds link inversion-

related molecules into dimers, generating R2
2(10) ring motifs.

The dimers are interconnected into two-dimensional networks

parallel to (102) via intermolecular N—H� � �N hydrogen

bonds. Further stabilization is provided by short inter-

molecular Cl� � �O interactions [3.142 (2) and 3.1475 (19) Å].

Related literature

For general background to and applications of imidazole

derivatives, see: Anuradha et al. (2006); Clark & Macquarrie

(1996); Jadhav et al. (2008); Kolavi et al. (2006); Susanta et al.

(2000). For graph-set descriptions of hydrogen-bond ring

motifs, see: Bernstein et al. (1995). For related 4-nitro-

imidazole crystal structures, see: Ségalas et al. (1992); De

Bondt et al. (1993). For the stability of the temperature

controller used for the data collection, see: Cosier & Glazer

(1986).

Experimental

Crystal data

C3H2ClN3O2

Mr = 147.53
Monoclinic, P21=c
a = 5.905 (2) Å
b = 10.033 (4) Å
c = 9.150 (3) Å
� = 105.180 (8)�

V = 523.2 (3) Å3

Z = 4
Mo K� radiation
� = 0.64 mm�1

T = 100 K
0.29 � 0.19 � 0.04 mm

Data collection

Bruker APEXII DUO CCD area-
detector diffractometer

Absorption correction: multi-scan
(SADABS; Bruker, 2009)
Tmin = 0.837, Tmax = 0.977

5484 measured reflections
1509 independent reflections
1195 reflections with I > 2�(I)
Rint = 0.037

Refinement

R[F 2 > 2�(F 2)] = 0.037
wR(F 2) = 0.097
S = 1.11
1509 reflections

90 parameters
All H-atom parameters refined
��max = 0.42 e Å�3

��min = �0.44 e Å�3

Table 1
Hydrogen-bond geometry (Å, �).

D—H� � �A D—H H� � �A D� � �A D—H� � �A

N1—H1N1� � �N2i 0.86 (3) 2.07 (3) 2.900 (2) 163 (2)
C2—H2� � �O1ii 0.92 (3) 2.48 (3) 3.317 (3) 151 (2)

Symmetry codes: (i) �xþ 1; y� 1
2;�zþ 1

2; (ii) �x;�yþ 1;�z þ 1.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT

(Bruker, 2009); data reduction: SAINT; program(s) used to solve

structure: SHELXTL (Sheldrick, 2008); program(s) used to refine

structure: SHELXTL; molecular graphics: SHELXTL; software used

to prepare material for publication: SHELXTL and PLATON (Spek,

2009).
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Comment

The nitro aromatic compounds are used as key substrates for the preparation of useful materials such as dyes, pharmaceutic-
als, perfumes and plastics (Susanta et al., 2000). Therefore, nitration of hydrocarbons particularly of aromatic compounds is
probably one of the most widely studied organic reactions (Jadhav et al., 2008). In addition, they have proven to be valuable
reagents for the synthesis of complex target molecules (Kolavi et al., 2006). Most of the substituted imidazoles are widely
used in pharmaceutical ingredients (Clark & Macquarrie, 1996). The imidazole nucleus is one of the important heterocyclic
groups due to its presence in a large number of bioactive pharmaceutical and agrochemicals (Anuradha et al., 2006). It was
also reported that a large number of compounds containing the imidazole ring possess some moderately useful activities.
The environmentally friendly nitration reaction has been the focus of recent research.

In the title imidazole derivative, the 1H-imidazole ring with atom sequence C1/N1/C2/C3/N2 is essentially planar, with a
maximum deviation of 0.003 (2) Å at atom N1. The nitro group is coplanar with the attached 1H-imidazole ring, as indicated
by the dihedral angle of 1.7 (2)°. The geometric parameters agree well with those reported for related 4-nitroimidazole
structures (Ségalas et al., 1992; De Bondt et al., 1993).

In the crystal structure, (Fig. 2), pairs of intermolecular C2—H2···O1 hydrogen bonds (Table 1) link inversion-related

molecules into dimers, generating R2
2(10) hydrogen bond ring motifs (Bernstein et al., 1995). These dimers are further

interconnected into two-dimensional arrays parallel to the (102) plane via intermolecular N1—H1N1···N2 hydrogen bonds

(Table 1). The interesting features of the crystal structure are the intermolecular short Cl···O interactions [Cl1···O1iii = 3.143

(2) and Cl1···O2i = 3.148 (2) Å; (i) 1-x, y-1/2, 1/2-z and (iii) 1+x, 3/2-y, z-1/2 ] which are shorter than the sum of the van
der Waals radii of the relavant atoms and help to further stabilize the crystal structure.

Experimental

Nitronium tetrafluoroborate (1.42 g, 0.0107 mol) was dissolved in nitromethane (10 ml) and 2-chloroimidazole (1 g, 0.0097
mol) was then added in lot-wise. The reaction mixture was stirred at room temperature for 3 h. The reaction mixture was
then neutrallized with an aqueous solution of sodium bicarbonate. The separated solid was then filtered. The crude product
was purified by column chromatography using 60–120 silica gel. The fraction eluted at 10 % ethyl acetate in hexane was
concentrated to afford the title compound as pale yellow single crystals (Yield 0.9 g, 62.93 %; m.p. 363–366 K).

Refinement

Atoms H1N1 and H2 were located in a difference Fourier map and allowed to refine freely [N1—H1N1 = 0.86 (3) and
C2—H2A = 0.93 (3) Å].
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Figures

Fig. 1. The molecular structure of the title compound, showing 50% probability displacement
ellipsoids for non-H atoms and the atom-numbering scheme.

Fig. 2. The crystal structure of the title compound, showing a two-dimensional network. Inter-
molecular interactions are shown as dashed lines.

2-Chloro-4-nitro-1H-imidazole

Crystal data

C3H2ClN3O2 F(000) = 296

Mr = 147.53 Dx = 1.873 Mg m−3

Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2073 reflections
a = 5.905 (2) Å θ = 3.6–30.0°
b = 10.033 (4) Å µ = 0.64 mm−1

c = 9.150 (3) Å T = 100 K
β = 105.180 (8)° Plate, yellow

V = 523.2 (3) Å3 0.29 × 0.19 × 0.04 mm
Z = 4

Data collection

Bruker APEXII DUO CCD area-detector
diffractometer 1509 independent reflections

Radiation source: fine-focus sealed tube 1195 reflections with I > 2σ(I)
graphite Rint = 0.037

φ and ω scans θmax = 30.0°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009) h = −6→8

Tmin = 0.837, Tmax = 0.977 k = −13→14
5484 measured reflections l = −12→12
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Refinement

Refinement on F2 Primary atom site location: structure-invariant direct
methods

Least-squares matrix: full Secondary atom site location: difference Fourier map

R[F2 > 2σ(F2)] = 0.037
Hydrogen site location: inferred from neighbouring
sites

wR(F2) = 0.097 All H-atom parameters refined

S = 1.11
w = 1/[σ2(Fo

2) + (0.0453P)2 + 0.1822P]
where P = (Fo

2 + 2Fc
2)/3

1509 reflections (Δ/σ)max = 0.001

90 parameters Δρmax = 0.42 e Å−3

0 restraints Δρmin = −0.44 e Å−3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier &
Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The
cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds
in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used
for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, convention-

al R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculat-

ing R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice
as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq

Cl1 0.72178 (8) 0.63986 (4) 0.10842 (5) 0.01869 (15)
O1 0.0169 (3) 0.65199 (14) 0.47907 (19) 0.0268 (4)
O2 0.1231 (3) 0.84048 (13) 0.40048 (18) 0.0250 (3)
N1 0.4713 (3) 0.49414 (15) 0.25596 (19) 0.0157 (3)
N2 0.4212 (3) 0.71387 (14) 0.26450 (18) 0.0151 (3)
N3 0.1318 (3) 0.71851 (16) 0.41138 (19) 0.0190 (3)
C1 0.5304 (3) 0.61677 (16) 0.2149 (2) 0.0149 (4)
C2 0.3104 (3) 0.51281 (17) 0.3371 (2) 0.0164 (4)
C3 0.2845 (3) 0.64762 (17) 0.3405 (2) 0.0150 (4)
H1N1 0.525 (4) 0.417 (3) 0.240 (3) 0.025 (6)*
H2 0.246 (4) 0.441 (3) 0.375 (3) 0.025 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23

Cl1 0.0218 (2) 0.0162 (2) 0.0214 (3) −0.00093 (16) 0.01140 (19) 0.00052 (17)
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O1 0.0311 (8) 0.0228 (7) 0.0340 (9) −0.0028 (6) 0.0221 (7) −0.0015 (6)
O2 0.0308 (8) 0.0120 (6) 0.0351 (9) 0.0043 (5) 0.0140 (7) −0.0022 (6)
N1 0.0193 (8) 0.0096 (7) 0.0196 (8) 0.0010 (6) 0.0078 (7) −0.0003 (6)
N2 0.0179 (8) 0.0107 (6) 0.0184 (8) 0.0001 (5) 0.0075 (6) 0.0000 (6)
N3 0.0206 (8) 0.0151 (7) 0.0231 (9) 0.0008 (6) 0.0090 (7) −0.0017 (6)
C1 0.0174 (9) 0.0113 (8) 0.0163 (9) −0.0013 (6) 0.0053 (7) −0.0004 (6)
C2 0.0186 (9) 0.0114 (8) 0.0208 (10) −0.0010 (6) 0.0082 (8) 0.0001 (7)
C3 0.0167 (9) 0.0122 (8) 0.0170 (9) −0.0007 (6) 0.0060 (7) −0.0019 (7)

Geometric parameters (Å, °)

Cl1—C1 1.690 (2) N2—C1 1.313 (2)
O1—N3 1.228 (2) N2—C3 1.368 (2)
O2—N3 1.228 (2) N3—C3 1.430 (2)
N1—C1 1.359 (2) C2—C3 1.362 (2)
N1—C2 1.363 (3) C2—H2 0.93 (3)
N1—H1N1 0.86 (3)

C1—N1—C2 107.01 (15) N2—C1—Cl1 124.11 (14)
C1—N1—H1N1 129.2 (17) N1—C1—Cl1 122.87 (14)
C2—N1—H1N1 123.7 (17) C3—C2—N1 104.32 (16)
C1—N2—C3 102.95 (15) C3—C2—H2 135.0 (16)
O2—N3—O1 124.46 (17) N1—C2—H2 120.7 (16)
O2—N3—C3 118.46 (16) C2—C3—N2 112.71 (17)
O1—N3—C3 117.08 (16) C2—C3—N3 126.29 (18)
N2—C1—N1 113.01 (17) N2—C3—N3 120.99 (16)

C3—N2—C1—N1 −0.4 (2) C1—N2—C3—C2 0.0 (2)
C3—N2—C1—Cl1 178.70 (15) C1—N2—C3—N3 −179.05 (17)
C2—N1—C1—N2 0.6 (2) O2—N3—C3—C2 −177.8 (2)
C2—N1—C1—Cl1 −178.52 (14) O1—N3—C3—C2 1.9 (3)
C1—N1—C2—C3 −0.5 (2) O2—N3—C3—N2 1.1 (3)
N1—C2—C3—N2 0.3 (2) O1—N3—C3—N2 −179.10 (18)
N1—C2—C3—N3 179.32 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A

N1—H1N1···N2i 0.86 (3) 2.07 (3) 2.900 (2) 163 (2)

C2—H2···O1ii 0.92 (3) 2.48 (3) 3.317 (3) 151 (2)
Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1.
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Fig. 1
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Fig. 2


